Long-periodic Precession Parameters (my personal contribution to a prepared paper by N. Capitaine, P. Wallace & J. Vondrák)

Jan Vondrák, Astronomical Institute Prague

## **Outline:**

## Motivation;

Long-periodic expressions for:
precession of the ecliptic;
general precession and obliquity;

### Conclusions.



# **Motivation:**

- All models of precession used so far, including the newest P03, are expressed as
  - polynomials.
- Therefore, the model P03 is very accurate, but only for a limited time period (several centuries around J2000):
   the errors quickly grow with time!
- In reality, all precession parameters describe very longperiodic processes, with periods equal to hundreds of centuries:
  - It can be demonstrated, e.g., by numerical integration of the respective equations of motion.



2



# The goal of the present study:

To find relatively simple expressions that would

- ♦ be very close or identical with those of P03 in a short-time scale (≈10<sup>3</sup> years);
- ♦ follow approximately quasi-periodic variations of numerical integration in a long-term scale (≈10<sup>5</sup>- 10<sup>6</sup> years).
- Such expressions could be used universally, for any instant in the scale of up to million years.
- This study is only an initial step to demonstrate how we can proceed in future, to achieve the final goal:
  The next generation of precession model long-term expressions for the CIP motion (*X*, *Y*).



# **A. Precession of the ecliptic:**

Basis: Numerical integration of the motion of the solar system, using the integrator package Mercury 6 (Chambers, MNRAS 1999), in the interval ±2000cy with the step equal to 1cy.

### The model:

- In 6 long-periodic terms, corresponding to Laskar's largest terms with periods 2309, 1831, 730, 708, 668 and 492 centuries;
- + cubic polynomial to account for longer periods.
- The terms above are fitted to
  - Integration outside the interval ±10cy from J2000;
  - ♦ P03 values inside this interval, with higher weights;

Small additional corrections are applied to constant, linear and quadratic terms to keep derivatives up to 2nd order identical with P03.





5

#### Long-term expressions for the precession of the ecliptic:

 $P_{A} = 5750.804069 + 0.1948311T - 0.00016739T^{2} - 48 \times 10^{-9}T^{3} + \sum_{i}^{6} (C_{i} \cos 2\pi T / P_{i} + S_{i} \sin 2\pi T / P_{i})$  $Q_{A} = -1673.999018 + 0.3474459T + 0.00011243T^{2} - 64 \times 10^{-9}T^{3} + \sum_{i}^{6} (C_{i} \cos 2\pi T / P_{i} + S_{i} \sin 2\pi T / P_{i})$ 

| term               |                            | $P_A$        | $Q_A$        | <i>P</i> [cy] |
|--------------------|----------------------------|--------------|--------------|---------------|
| $\boldsymbol{s}_1$ | $C_{1}$                    | 486.230527   | 2559.065245  | 2308.98       |
|                    | $S_{_1}$                   | -2578.462809 | 485.116645   |               |
| <b>S</b> 2         | $C_2$                      | -963.825784  | 247.582718   | 1831.25       |
|                    | $\boldsymbol{S}_2$         | -237.405076  | -971.375498  |               |
| <b>s</b> 3         | <i>C</i> <sub>3</sub>      | -1868.737098 | -957.399054  | 687.52        |
|                    | $\boldsymbol{S}_3$         | 1007.593090  | -1930.464338 |               |
| $\boldsymbol{s}_4$ | $C_4$                      | -1589.172175 | 493.021354   | 729.97        |
|                    | $oldsymbol{S}_4$           | -423.035168  | -1634.905683 |               |
| $\boldsymbol{s}_6$ | $C_5$                      | 429.442489   | -328.301413  | 492.21        |
|                    | $oldsymbol{\mathcal{S}}_5$ | 337.266785   | 429.594383   |               |
|                    | $C_6$                      | -2244.742029 | -339.969833  | 708.13        |
|                    | $\boldsymbol{S}_6$         | 221.240093   | -2131.745072 |               |







# **B. General precession, obliquity**

Basis: Numerical integration of general precession and obliquity LA93 (Laskar et al., A&A 1993) available in interval ±1My with the step equal to 10cy. Additional corrections applied to account for the change of dynamical ellipticity, J2 dot and secular change of obliquity.

#### The model:

- 10 long-periodic terms, corresponding to periods equal to 4043, 537, 417, 410, 403, 396, 305, 289, 281 and 204 cy;
- + cubic polynomial to account for longer periods.
  - These terms are fitted to numerical integration outside the interval ±10cy from J2000 and P03 values inside this interval,
  - small additional corrections are applied to constant, linear and quadratic terms (the latter for precession only) to keep derivatives up to 2nd order identical with P03.





## Long-term expressions for the general precession & obliquity:

| $p_A = 7907.295950 + 5044.374034T - 0.00713473T^2 + 6 \times 10^{-9}T^3$      | term                  | n            | C            | P[cy]   |
|-------------------------------------------------------------------------------|-----------------------|--------------|--------------|---------|
| $+ \sum^{10} (C \cos 2\pi T / P + S \sin 2\pi T / P)$                         | pts. C.               | -6180,062400 | 807,904635   | 409,90  |
| $\sum_{i=1}^{n} \left( e_i \cos 2\pi i + r_i + s_i \sin 2\pi i + r_i \right)$ | $S_1$                 | -2434.845716 | -2056.455197 | 100.00  |
| $\varepsilon_A = 839/3.8/6448 - 0.0425899T - 0.00000113T^2$                   | $p+s_{4}C_{2}$        | -2721.869299 | -177.959383  | 396.15  |
| $+\sum_{i=1}^{10} (C_i \cos 2\pi T / P_i + S_i \sin 2\pi T / P_i)$            | $S_2$                 | 538.034071   | -912.727303  |         |
|                                                                               | $p+s_6 C_3$           | 1460.746498  | 371.942696   | 536.91  |
|                                                                               | <b>S</b> <sub>3</sub> | -1245.689351 | 447.710000   |         |
|                                                                               | $p+\sigma_3 C_4$      | -1838.488899 | -176.029134  | 402.90  |
| En Mar Salt with                                                              | $S_4$                 | 529.220775   | -611.297411  |         |
|                                                                               | $p+\sigma_6 C_5$      | 949.518077   | -89.154030   | 417.15  |
| ENT that I be the                                                             | $S_{5}$               | 277.195375   | 315.900626   |         |
| Handland H. Hand Harry Just                                                   | $p+s_1 C_6$           | 32.701460    | -336.048179  | 288.92  |
|                                                                               | $oldsymbol{S}_6$      | 945.979710   | 12.390157    |         |
| Aller Aller Shall                                                             | $g_2 - g_5 C_7$       | 598.054819   | -17.415730   | 4042.97 |
|                                                                               | $S_7$                 | -955.163661  | -15.922155   |         |
|                                                                               | $C_8$                 | -293.145284  | -28.084479   | 304.90  |
| - I have have the first first first for the second                            | $S_8$                 | 93.894079    | -102.870153  |         |
|                                                                               | C <sub>9</sub>        | 66.354942    | 21.456146    | 281.46  |
|                                                                               | $S_9$                 | 0.671968     | 24.123484    |         |
|                                                                               | $C_{10}$              | 18.894136    | 30.917011    | 204.38  |
|                                                                               | $S_{10}$              | -184.663935  | 2.512708     |         |
| the state fits and g                                                          |                       |              |              |         |
|                                                                               |                       |              |              | V C D Z |



10





# **Conclusions:**

#### ♦ It is possible to construct a model of precession that:

- is as accurate as P03 in short-time interval (a few centuries) around J2000,
- approximately follows the periodical character of the phenomenon in a long-term sense (hundreds of thousand years).
- This work is meant as an introductory study for a prepared paper by Capitaine, Wallace and Vondrák devoted to this problem.

Acknowledgement: This study was made possible thanks to grant LC056, awarded by the Ministry of Education of the Czech Republic



V C D Z